Science activities

Reset filters

2 records


















Records

Sort order
  • Title

    Investigation of the resilience of the salt marsh harvest mouse and best management practices in response to climate change

    Lead University of California - Davis [UC Davis]
    Description The objectives of this study are to: Investigate the response of the salt marsh harvest mouse to several threats of climate change, including sea-level rise and extreme annual climate cycles. Develop best management practices for improving the resilience of the salt marsh harvest mouse to future climate change. Develop a reliable technique for remote detection of salt marsh harvest mouse.
    Science topics Climate change, Salt marsh harvest mouse, Saltwater / freshwater marshes
    Updated April 29, 2022
  • Title

    Linking Trophic Ecology with Slough and Wetland Hydrodynamics, Food Web Production and Fish Abundance in Suisun Marsh

    Lead University of California - Davis [UC Davis]
    Description Suisun Marsh remains one of the most productive regions of the San Francisco Estuary (SFE), fueling interest in the Marsh as a model for restoring estuarine function to the region in the future. The UC Davis Suisun Marsh Fish Survey has 30 years of data on physical structure, water quality, benthic and pelagic invertebrates and fish. We will use these and other data to explore patterns of fish abundance in relation to zooplankton, slough geomorphology, and regional hydrodynamics. Our goal is to understand and predict the kinds of physical variability and structure that create attractive habitat for fish, in order to 1) serve as a template for wetland and subtidal habitat restoration in the Estuary and 2) anticipate the effects of sea level rise, levee failure and salinity increases that are expected to have a large impact on the Marsh in the near future. A comprehensive literature and data search will pull together known information for synthesis. Cluster analysis will identify slough complexes into types of functional habitat. Predictive maximum likelihood, hierarchical and multivariate autoregressive models will be used to predict how foodwebs and fish respond to environmental factors. Finally, coupled hydrodynamic-life history models for zooplankton will demonstrate how production is regulated by slough morphology. Results will be integrated as a white paper on the history, current functioning, and future of the Marsh.
    Science topics Levees, Climate change
    Updated April 29, 2022